
Publications
27.
Xie, J.-F.; Wei, P.-C.; Li, Y.; Chang, C.-C.; Chang, K.-C.; Lu, C.-P.; Hsu, T.; Tzou, D.-L. M.; Tu, H.-L.*; Wang, C.-M.* "Unique Organic−Inorganic Hybrid Copper(I) Phosphate with Ultralow Ractopamine Detection Limit and In Situ Sensing Ability" Inorg. Chem. 2025, 64, 4408−4414.
26.
Chang, R.; Chen, C.-Y.; Gao, L.; Li, Y.; Zhao, H.; Sue, A. C.-H.; Chang, K.-C.*” Highly Selective Cu2+ Detection with a Naphthalimide-Functionalised Pillar[5]arene Fluorescent Chemosensor” Org. Biomol. Chem., 2024, 22, 745–752. (Outside Front Cover)
25.
C.-Y. Chen, Z.-H. Lee, C.-C. Shih, H.-M. Lin, K.-C. Chang*, Applications of Pillar[n]arene-based Functional Materials, Chemistry, 2024, 82, 51-64. (Cover)
24.
Chen, T.-R.; Chang, K.-C.* Chen, C.-Y.; Lee, L.-W.; Shen, L.-C.; Chen, H.-N.; Chung, W.-S.* “Calix[4]arene-based supramolecular gels for mercury removal in water” Chem. Asian J. 2023, 18, e202300739.
23.
Yin, M.-C.; Wei, P.-C.; Li, Y.; Hsu, T.; Jian, J.-Y.; Chang, K.-C.; Lu, C.-P.; Tu, H.-L.; Wang, C.-M.*” Structural Variants and Ultra-Low Detection Ability for Tryptamine in Two Polymorphs of a Zincophosphite Framework” Inorg. Chem. 2023, 62, 18150–18156.
22.
Huang, Y.-Y.; Lee, Z.-H.; Chang, K.-C.*; Wu, Z.-Y.; Lee, C.-C.; Tsoua, M.-H.; Lin, H.-M.*” Mesoporous silica nanoparticles with dualtargeting agricultural sources for enhanced cancer treatment via tritherapy” RSC Adv., 2023,13, 19079–19090.
21.
Chang, K.-C.*; Chen, C.-Y.; Hsu, C.-Y.; Lee, L.-W.; Chung, W.-S.* “A highly selective chromogenic and fluorogenic chemodosimeter for dual detection of Cu2+ based on a redox-active calix[4]arene with isoxazolylchloroanthracene” Analyst, 2022, 147, 5105–5112.
20.
Chang, K.-C.*; Lee, L.-W.; Lin, H.-M.; Yen, C.-F.* Wang, C.-M.*; Wu. J.-Y.* “Hetero-interpenetrating porous coordination polymers”, Dalton Trans., 2022, 51, 7025–7034.
19.
Li, Y.; Li, H.-Y.; Chang, K-C.; Lin, H.-M.; Wang, C.-M. ”Recent developments in organic–inorganic hybrid metal phosphates and phosphites” Dalton Trans., 2021, 50, 10014–10019.
18.
Chang, K.-C.; Chen, C.-Y.; Lin, T.-P.; Ku, P.-J.; Chen, C.-L.; Wang, C.-M.; Lin, H.-M.; Tseng, M.-C.; Singh, A. S.; Sun, S.-S. “Platinum(II)-directed self-assembly loop complexes for anion recognition and sensing”, J. Chin. Chem. Soc. 2018, 65, 141–148.
17.
Su, P.-M.; Chang, K.-C.*; Yang, C.-J.; Liu, Y.-C.; Chung, W.-S.* “Light-driven nanofiber and nanoring morphological transformations in organogels based on an azobenzene-bridged biscalix[4]arene”, Chem. Commun. 2017, 53, 13241–13244.
16.
Chang, K.-C.; Sun, S.-S.; Odago, M. O.; Lees, A. J. “Anion recognition and sensing by transition-metal complexes with polarized N-H recognition motifs”, Coord. Chem. Rev. 2015, 284, 111-123.
15.
Chen. Y-J.; Yang, S.-C.; Tsai, C.-C. Chang, K.-C.; Chuang, W.-H.; Chu, W.-L.; Kovalev, V.; Chung, W.-S. “Anthryl-1,2,4-oxadiazole-Substituted Calix[4]arenes as highly selective fluorescent chemodosimeters for Fe3+”, Chem. Asian J. 2015, 10, 1025-1034.
14.
Chang, K.-C.; Minami T.; Koutnik, P. Savechenkov, P. Y.; Liu, Y. Anzenbacher, P. Jr. “Anion binding modes in meso-substituted hexapyrrolic calix[4]pyrrole isomers”, J. Am. Chem. Soc. 2014, 136, 1520-1525.
13.
Tsai, C.-C.; Cheng, Y.-T.; Shen, L.-C.; Chang, K.-C.; Ho, I.-T.; Chu, J.-H.; Chung, W.-S. “Biscalix[4]arene derivative as a very efficient phase selective gelator for oil spill recovery”, Org. Lett. 2013, 15, 5830-5833.
12.
Tsai, C.-C.; Chang, K.-C.; Ho, I.-T.; Chu, J.-H.; Cheng, Y.-T.; Shen, L.-C.; Chung, W.-S. “Evolution of nano- to microsized spherical assemblies of fluorogenic biscalix[4]arene into supramolecular organogel”, Chem. Commun. 2013, 49, 3037-3039.
11.
Chang, K.-C.; Sun. S.-S.; Lees, J. A. “Anion sensing by rhenium(I) carbonyls with polarized N-H recognition motifs”, Inorg. Chim. Acta. 2012, 389, 16-28.
10.
Chang, K.-C.; Lin, J.-L.; Shen, Y.-T.; Hung, C.-Y.; Chen, C.-Y.; Sun. S.-S. “Synthesis and photophysic properties of self-assembled metallgels of platinum(II) acetylide complexes with elaborate long-chain pyridine-2,6-dicarboxamides”, Chem. Eur. J. 2012, 18, 1312-1321.
9.
Li, C.-H.; Chang, K.-C.; Tsou, C.-C.; Lan, Y. ; Yang, H.-C.; Sun. S.-S. “Chiral amplification in one-dimensional helical nanostructure self-organized from phenylethynyl thiophene with elaborated long-chain dicarboxamides”, J. Org. Chem. 2011, 76, 5524–5530.
8.
Chang, K.-C.; Su, I.-H.; Wang, Y.-Y.; Chung, W.-S. “A bifunctional chromogenic calix[4]arene chemosensor for both cations and anions: a potential Ca2+ and F– switched INHIBIT logic gate with a YES logic function”, Eur. J. Org. Chem. 2010, 24, 4700–4704.
7.
Chang, K.-C.; Sun, S.-S. “The application of organogels in dye-sensitized solar cells chemistry”, Chin. Chem. Soc., Taipei, 2009, 67, 353–359.
6.
Shen, Y.-T.; Li,C.-H.; Chang, K.-C.; Chin, S.-Y.; Lin, H.-A.; Liu, Y.-M.; Hung, C.-Y.; Hsu,H.-F.; Sun, S.-S. “Synthesis, optical, and mesomorphic properties of self-assembled organogels featuring phenylethynyl framework with elaborated long-chain pyridine-2,6-dicarboxamides”, Langmuir 2009, 25, 8714–8722.
5.
Senthilvelan, A.; Ho, I.-T.; Chang, K.-C.; Lee, G.-H.; Liu, Y.-H.; Chung, W.-S. “Cooperative recognition of a copper cation and anion by a calix[4]arene substituted at the lower rim by a β-Amino-α, β- unsaturated ketone”, Chem. Eur. J. 2009, 15, 6152–6160.
4.
Chang, K.-C.; Luo, L.-Y.; Diau, Eric G.-H.; Chung, W.-S. “Highly selective fluorescent sensing of Cu2+ ion by an arylisoxazole modified calix[4]arene”, Tetrahedron Lett. 2008, 49, 5013–5016.
3.
Chang, K.-C.; Su, I.-H.; Senthilvelan, A.; Chung, W.-S. “Triazole-modified calix[4]crown as a novel fluorescent on-off switchable chemosensor”, Org. Lett. 2007, 9, 3363–3366.
2.
Chang, K.-C.; Su, I.-H.; Lee, G.-H.; Chung, W.-S. “Triazole- and azo-coupled calix[4]arene as a highly sensitive chromogenic sensor for Ca2+ and Pb2+ ions”, Tetrahedron Lett. 2007, 48, 7274–7278.
1.
Senthilvelan, A.; Tsai, M.-T.; Chang, K.-C.; Chung, W.-S. “Mo(CO)6-mediated synthesis of calix[4]arenes carrying β-hydroxy ketones or α,βunsaturated-β-amino ketones”, Tetrahedron Lett. 2006, 47, 9077–9081.
Highly Selective Cu²⁺ Detection Using a Naphthalimide-Functionalized Pillar[5]arene Fluorescent Chemosensor
Chemosensor 1, a pillar[5]arene macrocycle with five naphthalimide groups, acts as a ratiometric fluorescent chemosensor for Cu²⁺. Unlike monomeric compound 2, sensor 1 shows dual emission from both monomer and excimer. In CH₂Cl₂/CH₃CN (1:1), it displays high selectivity for Cu²⁺ among 15 metal ions. Upon Cu²⁺ binding, excimer emission decreases while monomer emission increases. The binding stoichiometry is 1:1, with an association constant of (3.39 ± 0.40) × 10⁵ M⁻¹, and a LOD of 185 ± 7 nM. Spectroscopic and DFT studies suggest Cu²⁺ coordinates with the triazole groups on sensor 1.
Org. Biomol. Chem., 2024, 22, 745–752
Calix[4]arene-based Supramolecular Gels for Mercury Removal in water
A calix[4]arene-based gelator 1 with a lower-rim mono triazolylpyridine group was synthesized. It can spontaneously self-assemble into microspheres in various ethanol/water mixtures. Concentration-dependent ¹H NMR spectra and X-ray single-crystal structure confirmed that gelator 1 self-assembles via cooperative intermolecular noncovalent interactions. Metallogels formed by 1 showed remarkable selectivity toward Hg²⁺ ions. ¹H NMR spectra indicated that Hg²⁺ binds to nitrogen atoms in the triazole and pyridine coordination sites of 1. Field emission scanning electron microscopy and rheology experiments revealed that Hg²⁺ ions enhance gelation ability in ethanol and cause morphological changes in the self-assembly through metal-ligand interactions. In situ gelation triggered by mixing gelator 1 in ethanol with water samples (deionized, tap, and lake water) effectively removed Hg(II), reducing its concentration from 400 to 1.6 ppm.
Chem. Asian J. 2023, 18, e202300739
A Highly Selective Chromogenic and Fluorogenic Chemodosimeter for Dual Detection of Cu²⁺ Based on a Redox-Active Calix[4]arene with Isoxazolylchloroanthracene
Calix[4]arene 1, bearing two lower-rim isoxazolylchloroanthracene groups, functions as both a chromogenic and fluorogenic chemodosimeter for selective Cu²⁺ detection. The binding of ligand 1 and control compounds 2 and 3 with metal ions in CH₃CN/CHCl₃ (1:1) was studied by UV-vis and fluorescence spectroscopy. Only ligand 1 showed high selectivity for Cu²⁺. Upon binding Cu²⁺, ligand 1 exhibited a new absorption band at ~435 nm, turning the solution from colorless to yellow. Its fluorescence was strongly quenched with a detection limit of 1.674 μM. Ligand 1 reduces Cu²⁺ to Cu⁺ via its free phenolic –OH, which is simultaneously oxidized to quinones. Evidence for this redox process was provided by ¹H NMR, EPR, and FTIR spectra. The isolation of calix[4]diquinone 8 and Cu(CH₃CN)₄ClO₄ from the reaction confirmed their redox interaction.
Analyst, 2022, 147, 5105–5112
Hetero-interpenetrating Porous Coordination Polymers
Interpenetrating porous coordination polymers (IPCPs) are composed of two or more mechanically interlocked networks forming a unified structure. The two key criteria that distinguish homo-IPCPs from hetero-IPCPs are the framework topology and chemical composition of the individual networks. While homo-IPCPs are abundant, hetero-IPCPs are rare and often form unexpectedly. This Frontier article focuses on hetero-IPCPs, discussing their characteristics based on differences or similarities in network topology and chemical composition.
Dalton Trans., 2022, 51, 7025–7034